
Predicting Multi-Class Nuclei Phenotypes for Drug Testing 
Using Deep Learning

Introduction 

Quantifying the dynamic movement of proteins, such as nuclear receptors in response to drugs, requires robust nuclear 
segmentation methods using dyes and stains. However, this process has notable limitations: live cell staining procedures are 
time-consuming, expensive, and can lead to phototoxicity, photobleaching, and inactivation of photosensitive compounds (e.g., 
R18811). 

To overcome these challenges, we developed a neural network (NN) using cellSens™ imaging software with TruAI™ deep-learning 
technology to identify cell nuclei without using fluorescent labels. We then trained the NN to distinguish between different cell 
phenotypes in response to drugs. Here, we apply the NN workflow to predict intracellular androgen receptor (AR) dynamics in 
live prostate cancer cells treated with AR-targeting drugs. 

Benefits
• Identify nuclei phenotypes without using fluorescent labels

• Save time and costs spent on nuclear dyes (staining and imaging)

• Reduced phototoxicity and photobleaching 

• Preserves activity of photosensitive compounds 

Upon activation, cytoplasmic AR translocates to the nucleus where it localizes to transcriptionally active sites, which can be 
visualized as a distinct speckling pattern using confocal microscopy. To predict the AR dynamics, we first generated a NN 
that detects cell nuclei without using nuclear stains. Then we classified cells based on GFP-AR nuclear translocation and 
transactivation (speckling) status―both essential assay readouts to test compounds for their ability to target AR. Finally, we 
demonstrated that our NN workflow successfully predicts these critical AR phenotypes without nuclear staining.

Figure 1: Workflow to predict multi-class nuclei phenotypes using a trained NN.



Figure 2: Preparation of multi-class AR phenotype training data based on nuclei staining. (Left) green: AR-GFP, purple: SiR-DNA. (Right) evaluation of ground truth data sets.

Methods 
We generated a training data set consisting of three major AR phenotypes commonly observed in response to drugs. We used 
half of the images to generate the NN, and the other half to evaluate its performance. Finally, we applied our multi-class NN to 
an independent data set without a nuclear stain.

Training data preparation from three AR phenotypes

As a first step in building a NN, we generated a training data set consisting of three major AR phenotypes: 

1. Inactive, cytoplasmic AR (no treatment control, NTC)

2. Ligand-bound but inactive nuclear AR (10 µM bicalutamide)

3. Active nuclear AR speckling (1 nM R1881)

To generate ground truth data, we stained nuclei using SiR-DNA. We acquired 1024 × 1024 pixel ratio images with a UPLSAPO 
20X objective using the Olympus FV3000 laser confocal microscope’s galvanometer scanner. Here we divided the entire data set 
(60 images) into two equal parts for the training set and validation set (30 images each). To train the NN, we used 10 maximum 
intensity projected GFP-AR images from each of the three AR phenotypes (50% of the data, 30 images total) with a nuclear stain.

Ground truth optimization 

Figure 2 demonstrates the ground truth data evaluated by the NN, with cytoplasmic AR in green, nuclear AR in yellow, and 
speckled AR in red. Using this color-coded segmentation map, we fine-tuned the ground truth by manually correcting errors in 
nuclear detection and segmentation and reclassifying miscategorized nuclei.



Figure 4: Cell class distribution for the following conditions: no treatment control (left), bicalutamide (middle), or R1881 (right). Plot depicts the percentage of cells 
categorized as class 1 (cytoplasmic AR), class 2 (nuclear AR), and class 3 (speckled AR). No treatment control resulted in mostly class 1 cells. Bicalutamide (AR antagonist) 
induced a shift toward class 2, and R1881 (AR agonist) led to class 3, active AR localized at transcriptionally active sites.

Figure 3: NN training reports the similarity index and validation mean values in real time.

We used TruAI technology to create a standard NN with multi-class configurations, incorporating 10 training images from each 
AR phenotype. Quality and accuracy of the NN were reported in real time. As shown in Figure 3, the similarity index increased 
with each successive iteration during the training process until a plateau was reached, indicating a training saturation (downward 
arrow). Checkpoints were created every 5,000 iterations (20% progress), and the optimal checkpoint was saved as a trained NN 
along with its similarity index value.

Validation of a multi-class neural network on blind data

We validated our multi-class NN model using the 50% of the images not used for ground truth or NN training (blind data). We then 
used these validation results to fine-tune the model parameters by applying an area filter (min. 49.83 µm² – max. 555.44 µm²) 
to eliminate cell debris and mis-segmented cells. The trained NN model predicted multi-class AR phenotypes independently 
without any nuclear stain. Figure 4 shows the phenotype class distribution using data from 10 images. 

Results

Neutral network creation using TruAI™ deep-learning technology
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Prediction of multi-class AR phenotypes on independent data sets

Next, to evaluate the multi-class NN model on independent images, we prepared a new data set using two clinical antiandrogens: 
bicalutamide and enzalutamide (Figure 5).

Treatment with the second-generation antiandrogen enzalutamide led to a prominent cytoplasmic AR (class 2) population with 
little or no speckling AR (class 3), suggesting an effective blockade of ligand-induced AR activation. In contrast, the older, less 
effective antiandrogen bicalutamide led to a notable shift toward active AR (class 3), suggesting its inability to effectively block 
1nM R1881-induced AR activation. These data confirm previous studies2.
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Figure 5: Cell class distribution for the following conditions: R1881 plus enzalutamide (left) or bicalutamide (right). Plot depicts predicted nuclei class distribution across 
treatment conditions.

Conclusion
Using the Olympus FV3000 confocal microscope and cellSens™ software with the TruAI™ deep-learning module, we generated a 
NN to detect and segment unstained nuclei, and subclassify cells based on AR phenotypic changes in response to drugs. This 
approach has the potential to increase drug testing efficiency by cutting down on testing time (experimental setup) and costs. 

Further, NNs can increase data quality by reducing artifacts such as phototoxicity, photobleaching, and inactivation of 
photosensitive compounds, and detect subtle changes that may be overlooked by the researcher and/or traditional image 
analysis pipelines. This deep-learning approach can be applied more broadly to subclassify cell populations based on nuclear or 
cell-based parameters ranging from protein localization to morphometric changes.
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